Enterprise Annual Water Quality Report ## **Enterprise Water System** The Water Works Board of the City of Enterprise is proud to report to its residents that the drinking water meets and exceeds federal guidelines. This water quality report covers the period January 1, 2011 to December 31, 2011, and is intended to provide everyone who receives water with a detailed explanation of the water quality. The number one goal of the Water Board is to provide you with a safe and dependable supply of drinking water. We are constantly working hard to refine and improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. This report will show you how that hard work has paid off for our residents. The Enterprise Water Works utilizes ground water taken from sixteen wells that tap into the Nanafalla. Salt Mountain Limestone. Providence and Clayton Aquifers. These wells are distributed throughout the City with locations either inside or within close proximity to the city limits. The water distributed in the Clintonville area is purchased from the New Brockton Water and Sewer Board. This water comes from groundwater wells within the New Brockton system located in the Clayton Aquifer. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity. For instance, microbial contaminants may come from sewage treatment plants, septic tanks, livestock operations, and wildlife. Pesticides and herbicides come from agricultural runoff and excess residential use. Other contaminants come from urban runoff, petroleum products, mining, and industrial wastewater. Radioactive materials can occur naturally or come from oil and gas production and mining. In order to ensure that tap water is safe to drink, the EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. The public is always welcome and invited to attend Water Board meetings, which take place at City Hall on 501 South Main Street. Regular meetings are held on the second Wednesday of each month at 12:00 pm. Any changes will be posted in advance at City Hall. Water Board Members are William Cooper. Sr., Chairman, Mark Jipson and Doug Vickers. Mayor Kenneth Boswell serves the Board as Superintendent. For more information about your drinking water and for opportunities to get involved, please call the Field Superintendent, Alan Mahan, at 334-347-1211 (ext. 2250). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA (Environmental Protection Agency)/CDC (Center of Disease Control) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791). All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk. Based on a study conducted by ADEM with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus monitoring for these contaminants is not required. ## **Table of Detected Contaminants** | Contominant | Level Detected | Range | MCL
(Highest Level Allowed) | AICLG
(Health Goal) | Potential Sources of Contamination Corrosion of household plumbing systems: crosion of natural deposits Corrosion of household plumbing systems: crosion of natural deposits | | |-----------------------------|----------------|---|--------------------------------|------------------------|--|--| | Copper (ppm) | 0,26 | 0 of 30 sites
exceeded the
action level | AL-1.3 | 1.3 | | | | Lead (pph) | 0,31 | 1 of 30 sites
exceeded the
action level | AL#15 | 0 | | | | Total Tribalomethanes (ppb) | 0.001 | 0-5.1 | 100 | 0 | Byproduct of drinking water disinfection | | | Chloroform (ppb) | 0,0014 | 0-1.5 | N/A | N/A | Byproduct of drinking water
disinfection | | ## **Table of Primary Contaminants** At high levels, primary contaminants are known to pose a health risk to humans. This table provides a synopsis of any primary contaminant detections. | CONTAMINANT | MCL | AMOUNT
DETECTED | CONTAMINANT | MCL | AMOUNT
DETECTED | |---|-------------|--------------------|------------------------------------|-----|--------------------| | Bacteriological | 1 | | Endothall (ppb) | 100 | ND | | Fotal Coliform Bacteria | < 5% | 2 | Endrin (ppb) | 2. | ND | | | 177 | 1.0 | Epichiorohydrin (ppb) | Ti | ND | | Purbidity Radiological | | | Glyphosate (ppb) | 700 | ND | | | 4 | ND | Heptachlor (ppb) | 400 | ND | | Beta/photon emitters (mrem/yr) | 15 | 1.5 | Heptachlor epoxide (ppb) | 200 | ND | | Alpha emitters (pci/l) | 5 | ND ND | Hexachlorobenzene (ppb) | ı | ND | | Combined radium (pci/l) | 5 | ND | Hexachloropentadiene (ppb) | 1 | ND | | Radium 228 | | 1417 | Lindane (ppb) | 200 | ND | | Inorganic | | | | 40 | ND | | Antimony (ppb) | 6 | ND | Methoxychlor (ppb) | 200 | ND | | Arsenic (ppb) | 50 | ND | Oxamyl [Vydate] (ppb) | | ND | | Asbestos (MFL) | 7 | ND | PCBs (ppb) | 500 | | | Barium (ppm) | 2 | ND | Pentachlorophenol (ppb) | 1 | ND | | Beryllium (ppb) | 4 | ND | Picloram (pph) | 500 | ND | | Cadmium (ppb) | 5 | ND | Simazine (ppb) | 4 | ND | | Chromium (ppb) | 100 | ND | Toxaphene (ppb) | 3 | ND | | Copper (ppm) | AL 1.3 | 0.26 | Benzene (ppb) | 5 | ND | | Cyanide (ppb) | 200 | ND | Carbon Tetrachloride (ppb) | 5 | ND | | Fluoride (ppm) | 4 | ND | Chlorobenzene (ppb) | 100 | מא | | Lead (ppb) | AL=15 | 0.31 | Dibromochloropropane (ppb) | 200 | ND | | Mercury (ppb) | 2 | ND | 0-Dichlorobenzene (ppb) | 600 | ND | | Nitrate (ppm) | 10 | ND | p-Dichiorobenzene (pph) | 75 | ND | | Nitrite (ppm) | 1 1 | ND | 1.2-Dichloroethane (ppb) | 5 | ND | | Selenium (ppb) | 50 | ND | 1.1-Dichloroethylene (ppb) | 7 | ND | | Thallium (ppb) | 2 | ND | Cis-1,2-Dichloroethylene (ppb) | 70 | ND | | Organic Chemicals | 77.4.4 1947 | | trans-1,2-Dichloroethylene(ppb) | 100 | NI) | | 2,4-D (ppb) | 70 | ND | Dichloromethane (ppb) | 5 | ND | | 2,4.5-TP (Silvex) (ppb) | 50 | ND | 1,2-Dichloropropane (ppb) | 5 | ND | | Acrylamide (ppb) | 177 | ND | Ethylbenzene (ppb) | 700 | ND | | Alachlor (ppb) | 2 | NI) | Ethylene dibromide (ppb) | 50 | ND | | Atrazine (ppb) | 3 | ND | Styrene (ppb) | 100 | ND | | Benzo(a)pyrene[PHAs] (ppb) | 200 | NI) | Tetrachloroethylene (ppb) | 5 | ND | | Carbofuran (ppb) | 40 | NI) | 1.2,4-Trichtorobenzene (ppb) | 70 | ND | | Chlordane (ppb) | 2 | ND | 1,1,1-Trichloroethane (pph) | 200 | ND
ND | | Dalapon (ppb) | 200 | ND | 1.1.2-Trichloroethane (ppb) | 5 5 | ND
ND | | Di-(2-ethylhexyl)adipate (ppb) | 400 | ND | Trichloroethylene (pph) | 100 | 0.7 | | Di(2-ethylhexyl)phthlates (ppb) | 6 | NI) | TTIM (ppb) | 100 | ND ND | | Dinoseb (ppb) | 7 | ND | Toluene (ppb) Vinyl Chloride (ppb) | 1 2 | NI) | | Diquat (ppb) Dioxin[2,3,7,8-TCDD] (ppb) | 30 | (IN | Xylenes (ppb) | 10 | ND | The following definitions are used in monitoring the drinking water. You will see their abbreviation in the chart above and on the previous page. Maximum Contaminant Level Goal or MCLG: The level of contaminant in drinking water below which there is no known or expected risk to health MCLG's allow for a margin of safety. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the hest available treatment technology. Action Level or A1.: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements a water system must follow: pph: Parts per billion (micrograms per liter (ng/l). ppm: Parts per million (milligrams per liter (mg/l). pCi/I: Picocuries per liter, a measure of radinactivity. TT: Treatment Technique, a required process intended to reduce the level of a contaminant in drinking water. NTU: Nephelometric Turbidity Units, a measure of water clarity. N/A: Not Applicable. ND: Not Detected. The Water Works Board has completed a Source Water Assessment Program (SWAP) for the water system. A Source Water Assessment Area delineation, contaminant inventory and susceptibility analysis has been completed for each of the system's water sources. Well #13 was added to system as a new water source in 2011. A contaminant inventory and susceptibility analysis was completed and is available for review at the Water Board office. Anyone who would like additional information may contact the Field Superintendent, Alan Mahan at 347-1211, ext. 2250.